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Massive spin-1 scattering in the Standard Model 

Scattering of longitudinal modes of W, Z bosons:

Grows with energy, violates perturbative unitarity at ~ 1 TeV

Something interesting must happen before this scale: no-lose theorem for LHC



Adding a scalar softens high-energy behavior:

Restores perturbative unitarity

Weakly coupled UV completion (Higgs mechanism)

Higgs mechanism 



Massive spin-2 scattering 

Generic interactions (Einstein-Hilbert plus a graviton potential)
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For special choices of interaction (dRGT massive gravity), 
this can be improved to

This is the best that can be done without new particles

Arkani-Hamed, Georgi, 
Schwartz (2003)

de Rham, Gabadadze, Tolley (2010)

James Bonifacio, KH (1804.08686) 



Gravitational Higgs mechanism? 

Can we do better by adding a finite number of new particles with spin < 2?
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No. James Bonifacio, KH, Rachel Rosen (1903.09643) 
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Kaluza-Klein theory 

We know that we should be able to do better by adding an infinite 
number of new particles with spin ≤ 2

pure gravity

theory with infinite towers of 
massive spin ≤ 2 particles

⇢<latexit sha1_base64="22nrH4tWnA5VjPPmrU9o3X49KS0=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUC9S8OKxgv2AJpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMC1MpDLrut1NaW9/Y3CpvV3Z29/YPqodHbZNkmvEWS2SiuyE1XArFWyhQ8m6qOY1DyTvh+G7md564NiJRjzhJeRDToRKRYBSt1PFDMRz6eb9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo+sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv6t5l/ebhsta4LeIowwmcwjl4cAUNuIcmtIDBGJ7hFd6c1Hlx3p2PRWvJKWaO4Q+czx9WC4+U</latexit>

N compact smooth dimensions



Kaluza-Klein amplitudes 

Higher dimensional theory is pure GR Graviton amplitudes grow with energy like 

Lower dimensional theory, keeping all KK modes, 
is just a re-writing of higher dimensional GR

Lower dimensional theory has massive spin-2 states in the spectrum:  
how is their high energy scattering softened to E2 ?

⇠ E2
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external massive spin-2 KK mode
exchange of all KK modes

Chivukula, Foren,  Mohan, Sengupta, Simmons (2019-2020)

James Bonifacio, KH (1910.04767) 



Kaluza-Klein theory 

Lower dimensional spectrum is determined by 
various Laplacians on the internal manifold

Higher dimensional Einstein equations  

Internal manifold is an Einstein manifold :

Non-trivial constraints will require this condition

Rmn(�) = � �mn
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N compact smooth dimensions

scalar (ordinary Laplacian) 
vector (Hodge Laplacian) 
tensor (Lichnerowicz Laplacian) 

⇢

<latexit sha1_base64="22nrH4tWnA5VjPPmrU9o3X49KS0=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUC9S8OKxgv2AJpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMC1MpDLrut1NaW9/Y3CpvV3Z29/YPqodHbZNkmvEWS2SiuyE1XArFWyhQ8m6qOY1DyTvh+G7md564NiJRjzhJeRDToRKRYBSt1PFDMRz6eb9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnx+7pScWWVAokTbUkjm6u+JnMbGTOLQdsYUR2bZm4n/eb0Mo+sgFyrNkCu2WBRlkmBCZr+TgdCcoZxYQpkW9lbCRlRThjahig3BW355lbQv6t5l/ebhsta4LeIowwmcwjl4cAUNuIcmtIDBGJ7hFd6c1Hlx3p2PRWvJKWaO4Q+czx9WC4+U</latexit>

ds2 = ḠABdX
AdXB
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Scalar Laplacian 

zero mode (constant)

Orthonormality Completeness

Conformal scalars (exist only on round spheres)

standard results of spectral theory on compact manifolds. For example, on any given manifold

each Laplacian has a discrete spectrum that is bounded from below and unbounded from above

and there exists a basis of real orthonormal eigenmodes. In Kaluza–Klein theories these eigenmodes

correspond to di↵erent particles and their eigenvalues determine the masses of the particles (see,

e.g., Ref. [14] for details).

Scalar Laplacian

We denote by  a an orthonormal basis of non-constant real eigenfunctions of the scalar Laplacian

on M, where a is a discrete index labelling the di↵erent eigenfunctions. These eigenfunctions satisfy

� a ⌘ �⇤ a = �a a, (2.2)

where �a > 0 is the corresponding eigenvalue. Orthonormality implies that
Z

M
 a1 a2 = �a1a2 , (2.3)

where
R
M denotes the integral over M with the canonical volume form. The normalized constant

eigenfunction is V
�1/2. This is the unique zero mode for the scalar Laplacian and we now treat

it separately from the non-constant eigenfunctions (unlike in the introduction). Completeness tells

us that any L
2-normalizable scalar function � on M can be expanded as

� =
c
0

V 1/2
+
X

a

c
a
 a, (2.4)

where c
0 = V

�1/2
R
M � and c

a =
R
M � 

a.

There are special eigenfunctions of the scalar Laplacian called conformal scalars, which are defined

as those scalars whose gradients are conformal Killing vectors that are not Killing vectors. We index

these by the set Iconf.. Conformal scalars satisfy the equation

✓
rmrn �

1

N
gmn⇤

◆
 a = 0, a 2 Iconf., (2.5)

and they exist only on the round spheres [15]. The conformal scalars are precisely the L = 1

spherical harmonics on S
N if N > 1 (see Appendix A).1

On Einstein manifolds with R > 0 the Lichnerowicz bound gives [17]

�a �
R

N � 1
, (2.6)

and this is saturated only by conformal scalars. This is analogous to a CFT unitarity bound.

1There can be many inequivalent Einstein metrics on spheres and exotic spheres [16]. By SN we will mean the

sphere with the standard round metric unless stated otherwise.
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Lichnerowicz bound 

saturated only by conformal scalars



Hodge Laplacian:

Vector Laplacian

Denote by Ym,i an orthonormal basis of real, transverse eigenvectors of the one-form Hodge Lapla-

cian on M, where i is a discrete index labelling the di↵erent eigenvectors. These eigenvectors

satisfy

�Ym,i ⌘ �⇤Ym,i +Rm
n
Yn,i = �iYm,i, r

m
Ym,i = 0, (2.7)

where �i � 0 is the corresponding eigenvalue. Orthonormality implies that
Z

M
Ym,i1Y

m
i2 = �i1i2 . (2.8)

Using completeness and the Hodge decomposition, any one-form Vm on M can be expanded as

Vm =
X

i

c
i
Ym,i +

X

a

c
a
@m a, (2.9)

where c
i =

R
M VmY

m
i and c

a = �
�1
a

R
M Vm@

m
 a.

Killing vectors are special transverse eigenvectors that generate the isometries of the metric. We

index them by the set IKilling. They satisfy the Killing equation,

r(mYn),i = 0, i 2 IKilling. (2.10)

There is another lower bound on the eigenvalues �i for closed Einstein manifolds,

�i �
2R

N
, (2.11)

which is saturated only by Killing vectors. Since �i � 0 there are no nontrivial Killing vectors on

closed Einstein manifolds with R < 0.

Lichnerowicz Laplacian

Lastly, we denote by h
TT
mn,I an orthonormal basis of real transverse traceless eigentensors of the

Lichnerowicz Laplacian on M, where I is a discrete index labelling the di↵erent eigentensors. On

an Einstein manifold, these eigentensors satisfy

�Lh
TT
mn,I ⌘ �⇤h

TT
mn,I +

2R

N
h
TT
mn,I � 2Rm

p
n
q
h
TT
pqI = �Ih

TT
mn,I , r

m
h
TT
mn,I = h

TT
m

m = 0, (2.12)

where �L is the Lichnerowicz Laplacian and �I is a Lichnerowicz eigenvalue.2 Orthonormality

implies that Z

M
h
TT
mn,I1h

mn,TT
I2 = �I1I2 . (2.13)

2In this paper the Lichnerowicz eigenvalues will always correspond to transverse and traceless symmetric 2-tensors.
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 a.
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index them by the set IKilling. They satisfy the Killing equation,
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Using completeness and the tensor decomposition, any symmetric tensor field Tmn on M can be

expanded as (see, e.g., Ref. [14] for details)

Tmn =
X

I
c
I
h
TT
mn,I + 2

X

i/2IKilling

c
i
r(mYn),i +

X

a/2Iconf.

c̃
a

✓
rmrn a �

1

N
r

2
 agmn

◆

+
X

a

1

N
c
a
 agmn +

1

NV 1/2
c
0
gmn, (2.14)

where the coe�cients are

c
I =

Z

M
T
mn

h
TT
mn,I , c

i = (�i � 2R/N)�1
Z

M
T
mn

r(mYn),i , (2.15a)

c̃
a =

N

�a ((N � 1)�a �R)

Z

M

✓
rmrn 

a
�

1

N
r

2
 
a
gmn

◆
T
mn

, (2.15b)

c
a =

Z

M
 
a
g
mn

Tmn, c
0 =

1

V 1/2

Z

M
g
mn

Tmn . (2.15c)

There is no general lower bound on Lichnerowicz eigenvalues, so a finite number of them can

be negative on any given manifold. For example, the Böhm metrics on S
3
⇥ S

2 can have large

negative Lichnerowicz eigenvalues [18]. However, some lower bounds do exist if we make additional

assumptions. For example, on closed Einstein manifolds with R > 0 that admit a Killing spinor,

there is the following lower bound [18, 19]:

�I �
�
16� (5�N)2

� R

4N(N � 1)
. (2.16)

Examples of odd-dimensional manifolds admitting a Killing spinor are Einstein–Sasaki manifolds.

Similarly, the Lichnerowicz eigenvalues are non-negative on closed Ricci-flat manifolds that admit

a parallel spinor [19, 20]. This includes Ricci-flat manifolds with special holonomy, such as Calabi–

Yau manifolds [21]. Closed Kähler–Einstein manifolds with R � 0 also have �I � 0 [22].

Another distinguished Lichnerowicz eigenvalue is �I = 2R/N . Eigentensors h
TT
mn,I with this

eigenvalue are called infinitesimal Einstein deformations and correspond to directions in the moduli

space of Einstein structures of M, i.e., the space of Einstein metrics on M modulo di↵eomorphisms

and volume rescalings. They give rise to massless scalars, called shape moduli, in Kaluza–Klein

reductions of gravity. Einstein manifolds with �I > 2R/N are therefore rigid,3 i.e., isolated points

in moduli space. Examples of rigid manifolds are the compact symmetric spaces discussed in

Appendix A [24].

3The converse is not true since infinitesimal Einstein deformations do not always integrate to curves of Einstein

structures [23].
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moduli space of Einstein structures (“zero” modes)

No known general lower bound (there may be finite number of negative eigenvalues)



Spectrum 

Expand metric over eigenfunctions:

KH, Janna Levin, Claire Zukowski (1310.6353 ) 

GAB = ḠAB +HAB

<latexit sha1_base64="NVk6eQWQkZjCjeB96VGy264HMTI=">AAACAnicbZDLSgMxFIbP1Futt1FX4iZYBEEoM1JQF0rVhV1WsBdohyGTpm1o5kKSEcpQ3Pgqblwo4tancOfbmE5noa0HQj7+/xyS83sRZ1JZ1reRW1hcWl7JrxbW1jc2t8ztnYYMY0FonYQ8FC0PS8pZQOuKKU5bkaDY9zhtesObid98oEKyMLhXo4g6Pu4HrMcIVlpyzb1bN7m6Hl90PCzQlI+r6eWaRatkpYXmwc6gCFnVXPOr0w1J7NNAEY6lbNtWpJwEC8UIp+NCJ5Y0wmSI+7StMcA+lU6SrjBGh1rpol4o9AkUStXfEwn2pRz5nu70sRrIWW8i/ue1Y9U7cxIWRLGiAZk+1Is5UiGa5IG6TFCi+EgDJoLpvyIywAITpVMr6BDs2ZXnoXFSssul87tysXKZxZGHfTiAI7DhFCpQhRrUgcAjPMMrvBlPxovxbnxMW3NGNrMLf8r4/AFnmZYq</latexit>

,

<latexit sha1_base64="mmdLVcRWRukvntYQLI4k82KPNyk=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuBNSLBLx4TMA8IFnC7KQ3GTM7u8zMCiHkC7x4UMSrn+TNv3GS7EETCxqKqm66u4JEcG1c99vJra1vbG7ltws7u3v7B8XDo6aOU8WwwWIRq3ZANQousWG4EdhOFNIoENgKRnczv/WESvNYPphxgn5EB5KHnFFjpfpFr1hyy+4cZJV4GSlBhlqv+NXtxyyNUBomqNYdz02MP6HKcCZwWuimGhPKRnSAHUsljVD7k/mhU3JmlT4JY2VLGjJXf09MaKT1OApsZ0TNUC97M/E/r5Oa8NqfcJmkBiVbLApTQUxMZl+TPlfIjBhbQpni9lbChlRRZmw2BRuCt/zyKmlelr1K+aZeKVVvszjycAKncA4eXEEV7qEGDWCA8Ayv8OY8Oi/Ou/OxaM052cwx/IHz+QN1tYy4</latexit>

,

<latexit sha1_base64="mmdLVcRWRukvntYQLI4k82KPNyk=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuBNSLBLx4TMA8IFnC7KQ3GTM7u8zMCiHkC7x4UMSrn+TNv3GS7EETCxqKqm66u4JEcG1c99vJra1vbG7ltws7u3v7B8XDo6aOU8WwwWIRq3ZANQousWG4EdhOFNIoENgKRnczv/WESvNYPphxgn5EB5KHnFFjpfpFr1hyy+4cZJV4GSlBhlqv+NXtxyyNUBomqNYdz02MP6HKcCZwWuimGhPKRnSAHUsljVD7k/mhU3JmlT4JY2VLGjJXf09MaKT1OApsZ0TNUC97M/E/r5Oa8NqfcJmkBiVbLApTQUxMZl+TPlfIjBhbQpni9lbChlRRZmw2BRuCt/zyKmlelr1K+aZeKVVvszjycAKncA4eXEEV7qEGDWCA8Ayv8OY8Oi/Ou/OxaM052cwx/IHz+QN1tYy4</latexit>



Spectrum 

Lower dimensional spectrum:

KH, Janna Levin, Claire Zukowski (1310.6353 ) 

massless graviton:

massive gravitons:

vectors:
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zero mode is 
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Flat space spectrum 
If we want to do S-matrix stuff, lower dimensional space should be flat

Rmn = 0
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Closed Ricci-flat manifolds are rare. 
The known examples are: 

Internal manifold is Ricci flat:

flat tori 
Calabi-Yau’s  
G2  
Spin(7) 

All have special holonomy. ⇢
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Dai, Wang, Wei (2005)  



Massive spin-2 4-pt amplitude 



Cubic Interactions 

fixed minimal coupling



Quartic Interaction 



Full Amplitude 

must independently vanish↵10, ↵8, ↵6, ↵4
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E10 sum rule 

Mathematical property of eigenfunctions that must hold on any Einstein manifold

Multiple ways to do this → Associativity/crossing relations:

Completeness:

Can use this to reduce any multi-overlap integral 
Z

N
 a1 a2 · · · ak
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to sums of triple overlaps

a



E8 sum rule

(identical external flavors)

Unitarity requires an 
infinite tower of states  

requires that a heavy tensor is exchanged, so there is an a* such that

repeat argument with internal particle now external → 

comes from crossing with 2 derivative insertions: 



E6 sum rule 

(identical external flavors)

comes from crossing with 4 derivatives: 



E4 sum rule 

(identical external flavors)

comes from crossing with 6 derivatives: 



Bounds the gaps between KK excitations of the graviton.  
(No EFT with a finite number of massive gravitons from KK) 

Also applies to smooth Calabi-Yau compactifications of string theory and G2 
compactifications of M-theory.

E4 sum rule

Assume          . Then first term must be ≤ 0, so there exists an eigenmode a* such that 



E4 sum rule

Example: Quintic Calabi-Yau (volume = 1)

�k+1

�k
 4
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Constraint on eigenvalue gaps for closed Ricci flat with 

This bound is optimal: it is saturated in every dimension by the first distinct nonzero 
eigenvalues on certain tori.

Includes all known cases of closed Ricci flat manifolds

V. Braun, T. Brelidze, M. R. Douglas, and B. A. Ovrut (2008)

Einstein condition essential: general closed Riemannian manifolds have no such bound:

de Verdiere’s theorem: given a closed manifold of dimension N ≥ 3 and any finite sequence of non-
decreasing positive numbers,  

then there exists a metric such that this is the sequence of the first k nonzero eigenvalues. 
 



Geometry/CFT analogy 

Einstein Manifolds CFTs

eigenfunctions

eigenvalues

overlap integrals

covariant derivatives

primary operators

scaling dimensions

descendent operators

correlators

completeness OPE

sum rules crossing relations

Lichnerowicz bound  unitarity bound

rn
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Z

N
 a1 a2 · · · ak
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ga1a2···ak ⌘
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standard results of spectral theory on compact manifolds. For example, on any given manifold

each Laplacian has a discrete spectrum that is bounded from below and unbounded from above

and there exists a basis of real orthonormal eigenmodes. In Kaluza–Klein theories these eigenmodes

correspond to di↵erent particles and their eigenvalues determine the masses of the particles (see,

e.g., Ref. [14] for details).

Scalar Laplacian

We denote by  a an orthonormal basis of non-constant real eigenfunctions of the scalar Laplacian

on M, where a is a discrete index labelling the di↵erent eigenfunctions. These eigenfunctions satisfy

� a ⌘ �⇤ a = �a a, (2.2)

where �a > 0 is the corresponding eigenvalue. Orthonormality implies that
Z

M
 a1 a2 = �a1a2 , (2.3)

where
R
M denotes the integral over M with the canonical volume form. The normalized constant

eigenfunction is V
�1/2. This is the unique zero mode for the scalar Laplacian and we now treat

it separately from the non-constant eigenfunctions (unlike in the introduction). Completeness tells

us that any L
2-normalizable scalar function � on M can be expanded as

� =
c
0

V 1/2
+
X

a

c
a
 a, (2.4)

where c
0 = V

�1/2
R
M � and c

a =
R
M � 

a.

There are special eigenfunctions of the scalar Laplacian called conformal scalars, which are defined

as those scalars whose gradients are conformal Killing vectors that are not Killing vectors. We index

these by the set Iconf.. Conformal scalars satisfy the equation

✓
rmrn �

1

N
gmn⇤

◆
 a = 0, a 2 Iconf., (2.5)

and they exist only on the round spheres [15]. The conformal scalars are precisely the L = 1

spherical harmonics on S
N if N > 1 (see Appendix A).1

On Einstein manifolds with R > 0 the Lichnerowicz bound gives [17]

�a �
R

N � 1
, (2.6)

and this is saturated only by conformal scalars. This is analogous to a CFT unitarity bound.

1There can be many inequivalent Einstein metrics on spheres and exotic spheres [16]. By SN we will mean the

sphere with the standard round metric unless stated otherwise.
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Geometry data CFT dataga1a2a3
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Geometric bootstrap 

Like CFT bootstrap, exploit crossing relations to constrain the data 

Crossing relations for a general Einstein manifold (not necessarily Ricci flat): 



Geometric bootstrap 

postulate some candidate geometric data, (a collection of eigenvalues 
and triple overlap integrals) 

These consistency conditions must be satisfied by the geometric data on any closed Einstein

manifold M that is connected and orientable. In fact, they also hold for the quotients of such

manifolds, M/�, where � is any subgroup of the isometry group of M. This is because the �-

invariant eigenmodes form a closed subsector of the consistency conditions. These quotient spaces

include certain non-orientable manifolds, such as RPN with even N , as well as certain orbifolds.

The quotients also include spaces that are not orbifolds. In the following sections we will usually

just write “closed Einstein manifolds” instead of “quotients of connected and orientable closed

Einstein manifolds.”

Note that we do not get additional independent consistency conditions from integrals involving

more than four eigenfunctions.

3 Bootstrap bounds

In analogy to the conformal bootstrap bounds on conformal data, we can use the consistency

conditions from Section 2.4 to find bounds on the geometric data of closed Einstein manifolds. We

do this by postulating some candidate geometric data, i.e., a collection of eigenvalues and triple

overlap integrals, and then search for a constant vector ~↵ 2 R3 such that the condition

V
�1
~↵ · ~F1 +

1

�2a1

X

I
~↵ · ~F2 g

2
a1a1I +

X

a/2Iconf.

"
~↵ · ~F3 +

R ~↵ · ~F4

(N � 1)�a �R

#
g
2
a1a1a = 0 (3.1)

can never be satisfied by this data. If such an ~↵ exists, then the candidate geometric data cannot

correspond to any closed Einstein manifold. Although we have far fewer constraints than in typical

conformal bootstrap problems, we will see that it is still possible to get some nontrivial bounds.

3.1 Eigenvalue bounds

We begin by looking for bootstrap bounds on the eigenvalues of the scalar Laplacian on closed

Einstein manifolds. These translate to bounds on the tree-level masses of Kaluza–Klein modes.

3.1.1 Low-lying eigenvalues

Suppose we are given a closed Einstein manifold M with R � 0. Let  a1 be an eigenfunction of the

scalar Laplacian on M whose eigenvalue �a1 is the smallest nonzero eigenvalue and let �a2 be the

next distinct eigenvalue in order of increasing size. The nonzero scalar eigenvalues therefore satisfy

�a 2 {�a1} [ [�a2 ,1), 0 < �a1 < �a2 . (3.2)

We can write the eigenfunction expansion of  2
a1 as

 
2
a1 = V

�1 +
X

�a=�a1

ga1a1
a
 a +

X

�a��a2

ga1a1
a
 a . (3.3)
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We can write the eigenfunction expansion of  2
a1 as
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These consistency conditions must be satisfied by the geometric data on any closed Einstein

manifold M that is connected and orientable. In fact, they also hold for the quotients of such

manifolds, M/�, where � is any subgroup of the isometry group of M. This is because the �-

invariant eigenmodes form a closed subsector of the consistency conditions. These quotient spaces

include certain non-orientable manifolds, such as RPN with even N , as well as certain orbifolds.

The quotients also include spaces that are not orbifolds. In the following sections we will usually

just write “closed Einstein manifolds” instead of “quotients of connected and orientable closed

Einstein manifolds.”

Note that we do not get additional independent consistency conditions from integrals involving

more than four eigenfunctions.

3 Bootstrap bounds
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conditions from Section 2.4 to find bounds on the geometric data of closed Einstein manifolds. We
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#
g
2
a1a1a = 0 (3.1)

can never be satisfied by this data. If such an ~↵ exists, then the candidate geometric data cannot

correspond to any closed Einstein manifold. Although we have far fewer constraints than in typical

conformal bootstrap problems, we will see that it is still possible to get some nontrivial bounds.
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candidate geometric data is ruled out

problem of finding such an α⃗ can be formulated as a semidefinite program (SDP)  

can be solved using SDPB, and Mathematica in simpler cases 
D. Poland, D. Simmons-Duffin,  A.  Vichi (2011)

D. Simmons-Duffin, (2015)
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Bounds on eigenvalues 
allowed values of the 2 lowest lying scalar eigenvalues, relative to the 
curvature

Lichnerowicz bound 

Assumptions: N = 4 , �a3 � 3R
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Figure 9: Upper bounds on |ga1a1a1 |
p
V for closed Einstein manifolds with R � 0 and N =

2, 4, . . . , 20, assuming that �I � 0 and �a 2 {�a1} [ [�a2 ,1).

Figure 10: Upper bounds on the size of the cubic coupling |ga1a1a2 |
p
V for closed Einstein manifolds

with R � 0 and N = 2, 4, . . . , 20 as we vary �a2/�a1 , where �a 2 {�a1}[ [�a2 ,1) and �I � 0. The

cross corresponds to the lightest nontrivial modes on long flat N -tori. The square, diamond, and

triangular markers correspond to the lightest nontrivial zonal spherical functions on RPN , CPN/2,

and HPN/4 with their standard metrics.
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Upper bounds on massive spin-2 coupling  
of lightest to next lightest mode

Bounds on cubic couplings 

⇠ ga1a1a2
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Bounds on closed hyperbolic manifolds 
James Bonifacio: arxiv:2107.09674 

Allowed lowest eigenvalues on Genus g surfaces:



Conclusions and open questions 

• Are there data that satisfy all the crossing relations which do not come 
from any manifold? (a non-geometric Kaluza-Klein compactification) 

• Can any non-trivial manifolds be isolated by bootstrap bounds?

• Is a manifold uniquely determined by its geometric data? (can’t hear 
the shape of a drum, but perhaps with triple overlaps?)

• New non-trivial constraints on the possible eigenvalue spectra and 
triple overlap integrals of Einstein manifolds

• They come from crossing relations on quadruple overlap integrals.  The 
same relations ensure the correct high-energy behavior of KK reductions 
of gravity

• Do any non-trivial manifolds live at the kinks of our bootstrap bounds?


