Unitarization in Kaluza-Klein theory and the Geometric Bootstrap

Kurt Hinterbichler (Case Western)

ITMP, Moscow State University, Oct. 13, 2021

James Bonifacio, KH: arxiv:1910.04767, arxiv:2007.10337
James Bonifacio: arxiv:2107.09674

Massive spin-1 scattering in the Standard Model

Scattering of longitudinal modes of W, Z bosons:

Grows with energy, violates perturbative unitarity at $\sim 1 \mathrm{TeV}$

Something interesting must happen before this scale: no-lose theorem for LHC

Higgs mechanism

Adding a scalar softens high-energy behavior:

Restores perturbative unitarity
Weakly coupled UV completion (Higgs mechanism)

Massive spin-2 scattering

Generic interactions (Einstein-Hilbert plus a graviton potential)

For special choices of interaction (dRGT massive gravity),
de Rham, Gabadadze, Tolley (20I0) this can be improved to E^{6}

This is the best that can be done without new particles

Gravitational Higgs mechanism?

Can we do better by adding a finite number of new particles with spin <2 ?

No.
James Bonifacio, KH, Rachel Rosen (1903.09643)

Kaluza-Klein theory

We know that we should be able to do better by adding an infinite number of new particles with spin ≤ 2

$$
d s^{2}=\bar{G}_{A_{1} A_{2}} d X^{A_{1}} d X^{A_{2}}=\eta_{\mu \nu} d x^{\mu} d x^{\nu}+\underbrace{\gamma_{m n} d y^{m} d y^{n}}
$$

N compact smooth dimensions

Kaluza-Klein amplitudes

James Bonifacio, KH (1910.04767)

Higher dimensional theory is pure $\mathrm{GR} \longrightarrow$ Graviton amplitudes grow with energy like $\sim E^{2}$

Lower dimensional theory, keeping all KK modes, is just a re-writing of higher dimensional GR
\rightarrow amplitudes should still grow like $\sim E^{2}$

Lower dimensional theory has massive spin-2 states in the spectrum: how is their high energy scattering softened to E^{2} ?

external massive spin-2 KK mode

Kaluza-Klein theory

$$
d s^{2}=\bar{G}_{A B} d X^{A} d X^{B}=\eta_{\mu \nu} d x^{\mu} d x^{\nu}+\underbrace{\gamma_{m n} d y^{m} d y^{n}}_{N \text { compact smooth dimensions }}
$$

Higher dimensional Einstein equations

Internal manifold is an Einstein manifold: $\quad R_{m n}(\gamma)=\lambda \gamma_{m n}$

Non-trivial constraints will require this condition

Lower dimensional spectrum is determined by various Laplacians on the internal manifold
scalar (ordinary Laplacian) vector (Hodge Laplacian) tensor (Lichnerowicz Laplacian)

Scalar Laplacian

$$
\Delta \psi_{a} \equiv-\square \psi_{a}=\lambda_{a} \psi_{a}, \quad \lambda_{a}>0
$$

Orthonormality
$\int_{\mathcal{N}} \psi_{a_{1}} \psi_{a_{2}}=\delta_{a_{1} a_{2}}$,

Completeness

$$
\begin{gathered}
\phi=\frac{c^{0}}{V^{1 / 2}}+\sum_{a} c^{a} \psi_{a}, \\
\text { zero mode (constant) }
\end{gathered}
$$

Conformal scalars (exist only on round spheres)

$$
\left(\nabla_{m} \nabla_{n}-\frac{1}{N} \gamma_{m n} \square\right) \psi_{a}=0, \quad a \in I_{\text {conf. }},
$$

Lichnerowicz bound

$$
\lambda_{a} \geq \frac{R}{N-1}
$$

saturated only by conformal scalars

Vector Laplacian

Hodge Laplacian:

$$
\Delta Y_{m, i} \equiv-\square Y_{m, i}+R_{m}{ }^{n} Y_{n, i}=\lambda_{i} Y_{m, i}, \quad \nabla^{m} Y_{m, i}=0, \quad \lambda_{i} \geq 0
$$

Orthonormality

$$
\int_{\mathcal{N}} Y_{m, i_{1}} Y_{i_{2}}^{m}=\delta_{i_{1} i_{2}}
$$

$$
V_{m}=\sum_{i} c^{i} Y_{m, i}+\sum_{a} c^{a} \partial_{m} \psi_{a}
$$

Killing vectors

$$
\nabla_{(m} Y_{n), i}=0, \quad i \in I_{\text {Killing }}
$$

Bound

$$
\lambda_{i} \geq \frac{2 R}{\uparrow_{\text {saturated only by Killing vectors }}^{N}}
$$

Tensor Laplacian

Lichnerowicz Laplacian:
$\Delta_{L} h_{m n, \mathcal{I}}^{T T} \equiv-\square h_{m n, \mathcal{I}}^{T T}+\frac{2 R}{N} h_{m n, \mathcal{I}}^{T T}-2 R_{m}{ }^{p}{ }_{n}{ }^{q} h_{p q \mathcal{I}}^{T T}=\lambda_{\mathcal{I}} h_{m n, \mathcal{I}}^{T T}, \quad \quad \nabla^{m} h_{m n, \mathcal{I}}^{T T}=h_{m}^{T T m}=0$,
Orthonormality
$\int_{\mathcal{N}} h_{m n, \mathcal{I}_{1}}^{T T} h_{\mathcal{I}_{2}}^{m n, T T}=\delta_{\mathcal{I}_{1} \mathcal{I}_{2}}$.
Completeness (symmetric tensor Hodge decomposition)

$$
\begin{aligned}
T_{m n} & =\sum_{\mathcal{I}} c^{\mathcal{I}} h_{m n, \mathcal{I}}^{T T}+2 \sum_{i \notin I_{\text {Killing }}} c^{i} \nabla_{(m} Y_{n), i}+\sum_{a \notin I_{\text {conf. }}} \tilde{c}^{a}\left(\nabla_{m} \nabla_{n} \psi_{a}-\frac{1}{N} \nabla^{2} \psi_{a} \gamma_{m n}\right) \\
& +\sum_{a} \frac{1}{N} c^{a} \psi_{a} \gamma_{m n}+\frac{1}{N V^{1 / 2}} c^{0} \gamma_{m n},
\end{aligned}
$$

moduli space of Einstein structures ("zero" modes)

$$
\lambda_{\mathcal{I}}=2 R / N
$$

No known general lower bound (there may be finite number of negative eigenvalues)

Spectrum

Expand metric over eigenfunctions:

$$
\begin{aligned}
G_{A B}=\bar{G}_{A B}+H_{A B} & , \quad H_{A_{1} A_{2}}=\left(\begin{array}{cc}
H_{\mu \nu} & H_{\mu n} \\
H_{m \nu} & H_{m n}
\end{array}\right), \\
H_{\mu \nu}(x, y) & =\sum_{a} h_{\mu \nu}^{a}(x) \psi_{a}(y)+\frac{1}{\sqrt{V}} h_{\mu \nu}^{0}(x), \\
H_{\mu n}(x, y) & =\sum_{i} A_{\mu}^{i}(x) Y_{n i}(y)+\sum_{a} A_{\mu}^{a}(x) \partial_{n} \psi_{a}(y), \\
H_{m n}(x, y) & =\sum_{\mathcal{I}} \phi^{\mathcal{I}}(x) h_{m n, \mathcal{I}}^{T T}(y)+\sum_{i \nexists I_{\text {Killing }}} \phi^{i}(x) \nabla_{(m} Y_{n) i}(y) \\
& +\sum_{a \notin I_{\text {conf. }}} \tilde{\phi}^{a}(x)\left(\nabla_{m} \nabla_{n} \psi_{a}(y)-\frac{1}{N} \nabla^{2} \psi_{a}(y) \gamma_{m n}\right) \\
& +\frac{\gamma_{m n}}{N}\left[\sum_{a} \phi^{a}(x) \psi_{a}(y)+\frac{1}{\sqrt{V}} \phi^{0}(x)\right] .
\end{aligned}
$$

Spectrum

Lower dimensional spectrum:
massless graviton: $h_{\mu \nu}^{0}$ Mullele
massive gravitons: $\quad h_{\mu \nu}^{a}$ Mellell $\quad m_{a}^{2}=\lambda_{a}$
vectors:

$$
A_{\mu}^{i} \sim \sim \sim \sim
$$

$m_{i}^{2}=\lambda_{i}-\frac{2 R_{(N)}}{N}$
Killing vectors massless (isometries)
scalars:

$$
\phi^{0}, \phi^{a}=
$$

$$
m_{a}^{2}=\lambda_{a}-\frac{2 R_{(N)}}{N}
$$

zero mode is volume modulus
scalars:

$$
\phi^{\mathcal{I}}--------\quad m_{\mathcal{I}}^{2}=\lambda_{\mathcal{I}}-\frac{2 R_{(N)}}{N}
$$

zero modes massless
(shape moduli)

Flat space spectrum

If we want to do S-matrix stuff, lower dimensional space should be flat

Internal manifold is Ricci flat: $R_{m n}=0$

Closed Ricci-flat manifolds are rare. The known examples are:

Calabi-Yau's
G_{2}

$\mathbf{x}=\lambda_{a}$
$\mathbf{x}=\lambda_{i}$
$\mathrm{x}=\lambda_{\mathrm{I}}$

$$
\begin{array}{ll}
\phi^{a}=- & A_{\mu}^{i}=\sim \\
\phi^{\mathcal{I}}=----
\end{array} \quad \begin{aligned}
& h_{\mu \nu}^{0}=m \\
& h_{\mu \nu}^{a}=\boldsymbol{m}
\end{aligned}
$$

Massive spin-2 4-pt amplitude

$$
h^{a_{1}} h^{a_{2}} \rightarrow h^{a_{3}} h^{a_{4}}
$$

Cubic Interactions

fixed minimal coupling $M_{d}^{d-2}=V M_{D}^{D-2}$

$g_{a_{1} a_{2} i_{3}} \equiv \int_{\mathcal{N}} \partial^{n_{1}} \psi_{a_{1}} \psi_{a_{2}} Y_{n_{1} i_{3}}$

$$
g_{a_{1} a_{2} a_{3}} \equiv \int_{\mathcal{N}} \psi_{a_{1}} \psi_{a_{2}} \psi_{a_{3}}
$$

$$
g_{a_{1} a_{2} I_{3}} \equiv \int_{\mathcal{N}} \partial_{n} \psi_{a_{1}} \partial_{m} \psi_{a_{2}} h_{T T, \mathcal{I}_{3}}^{m n}
$$

Quartic Interaction

$$
g_{a_{1} a_{2} a_{3} a_{4}} \equiv \int_{\mathcal{N}} \psi_{a_{1}} \psi_{a_{2}} \psi_{a_{3}} \psi_{a_{4}}
$$

Full Amplitude

$$
\begin{aligned}
& =\alpha_{10} E^{10}+\alpha_{8} E^{8}+\alpha_{6} E^{6}+\alpha_{4} E^{4}+\alpha_{2} E^{2}+\ldots . \\
& 1
\end{aligned}
$$

$\alpha_{10}, \alpha_{8}, \alpha_{6}, \alpha_{4}$ must independently vanish

E^{10} sum rule

$$
\begin{aligned}
g_{a_{1} a_{2} a_{3} a_{4}} & =\sum_{a} g_{a_{1} a_{2}}{ }^{a} g_{a_{3} a_{4} a}+V^{-1} \delta_{a_{1} a_{2}} \delta_{a_{3} a_{4}} \\
& =\sum_{a} g_{a_{1} a_{3}}{ }^{a} g_{a_{2} a_{4} a}+V^{-1} \delta_{a_{1} a_{3}} \delta_{a_{2} a_{4}} \\
& =\sum_{a} g_{a_{1} a_{4}}{ }^{a} g_{a_{2} a_{3} a}+V^{-1} \delta_{a_{1} a_{4}} \delta_{a_{2} a_{3}}
\end{aligned}
$$

Mathematical property of eigenfunctions that must hold on any Einstein manifold

Completeness:

$$
\psi_{a_{1}} \psi_{a_{2}}=\sum_{a} g_{a_{1} a_{2}}^{a} \psi_{a}+V^{-1} \delta_{a_{1} a_{2}}
$$

Can use this to reduce any multi-overlap integral $\int_{\mathcal{N}} \psi_{a_{1}} \psi_{a_{2}} \cdots \psi_{a_{k}}$ to sums of triple overlaps

Multiple ways to do this \rightarrow Associativity/crossing relations:
$g_{a_{1} a_{2} a_{3} a_{4}}=\int_{\mathcal{N}} \psi_{a_{1} \psi_{a_{2}}} \psi_{a_{3} \psi_{a_{4}}}=\int_{\mathcal{N}} \psi_{a_{1} \psi_{a_{2}} \psi_{a_{3}} \psi_{a_{4}}}=\int_{\mathcal{N}} \psi_{a_{1}} \psi_{a_{2} \psi_{a_{3}} \psi_{a_{4}}}$

E^{8} sum rule

$\alpha_{8}=0$
(identical external flavors)

$$
\sum_{a}\left(4 \lambda_{a_{1}}-3 \lambda_{a}\right) g_{a_{1} a_{1} a}^{2}+4 V^{-1} \lambda_{a_{1}}=0
$$

comes from crossing with 2 derivative insertions:

$$
\int_{\mathcal{N}} \psi_{a_{1} \psi_{a_{1}}} \partial_{m} \psi_{a_{1} \partial^{m}} \psi_{a_{1}}=\int_{\mathcal{N}} \psi_{a_{1}} \psi_{a_{1}} \partial_{m} \psi_{a_{1}} \partial^{m} \psi_{a_{1}}
$$

requires that a heavy tensor is exchanged, so there is an a^{*} such that

$$
g_{a_{1} a_{1} a^{*}} \neq 0 \quad \text { and } \quad \frac{4}{3} \lambda_{a_{1}}<\lambda_{a^{*}} \Longrightarrow \frac{2 m_{\text {external }}}{\sqrt{3}}<m_{\text {exchanged }}
$$

repeat argument with internal particle now external $\rightarrow \begin{aligned} & \text { Unitarity requires an } \\ & \text { infinite tower of states }\end{aligned}$

E^{6} sum rule

$$
\alpha_{6}=0
$$

(identical external flavors)

$$
\begin{gathered}
\sum_{a} P_{E^{6}}\left(\lambda_{a} / \lambda_{a_{1}}\right) \lambda_{a_{1}}^{2} g_{a_{1} a_{1} a}^{2}+16 N(N-1) \sum_{T} g_{a_{1} a_{1} I}^{2}=0, \\
P_{E^{6}}(x)=(4-3 N) N x^{2}+4\left(N^{2}-3\right) x+16
\end{gathered}
$$

comes from crossing with 4 derivatives:

$$
\int_{\mathcal{N}} \partial_{m} \stackrel{\psi_{a_{1}} \partial_{n}}{\psi_{a_{1}}} \partial^{m} \stackrel{\rightharpoonup}{\psi_{a_{1}} \partial^{n}} \psi_{a_{1}}=\int_{\mathcal{N}} \partial_{m} \stackrel{\rightharpoonup}{\psi_{a_{1}} \partial_{n} \psi_{a_{1}} \partial^{m}} \psi_{a_{1}} \partial^{n} \psi_{a_{1}}
$$

E^{4} sum rule

$$
\alpha_{4}=0
$$

(identical external flavors)

$$
\begin{gathered}
\sum_{a} P_{E^{4}}\left(\lambda_{a} / \lambda_{a_{1}}\right) \lambda_{a_{1}}^{3} g_{a_{1} a_{1} a}^{2}+16(N-1) \sum_{\mathcal{I}} \lambda_{\mathcal{I}} g_{a_{1} a_{1} \mathcal{I}}^{2}=0 \\
P_{E^{4}}(x)=x(x-4)((3 N-2) x-4 N)
\end{gathered}
$$

comes from crossing with 6 derivatives:

$$
\int_{\mathcal{N}} \partial_{m} \stackrel{\left.\psi_{a_{1}} \partial_{n} \psi_{a_{1}} \Delta_{L}\left(\partial^{m} \psi_{a_{1}} \partial^{n} \psi_{a_{1}}\right)=\int_{\mathcal{N}} \partial_{m} \stackrel{\rightharpoonup}{\psi_{a_{1}} \partial_{n} \psi_{a_{1}} \Delta_{L}\left(\partial^{m} \psi_{a_{1}} \partial^{n} \psi_{a_{1}}\right)} \text {) }{ }^{2}\right)}{ }
$$

E^{4} sum rule

$$
\begin{gathered}
\sum_{a} P_{E^{4}}\left(\lambda_{a} / \lambda_{a_{1}}\right) \lambda_{a_{1}}^{3} g_{a_{1} a_{1} a}^{2}+16(N-1) \sum_{\tau} \lambda_{\mathcal{I}} g_{a_{1} a_{1} \mathcal{I}}^{2}=0, \\
P_{E^{4}}(x)=x(x-4)((3 N-2) x-4 N) .
\end{gathered}
$$

Assume $\lambda_{\mathcal{I}} \geq 0$. Then first term must be ≤ 0, so there exists an eigenmode a^{*} such that

$$
g_{a_{1} a_{1} a^{*}} \neq 0 \quad \text { and } \quad \frac{4 N}{3 N-2} \lambda_{a_{1}} \leq \lambda_{a^{*}} \leq 4 \lambda_{a_{1}} .
$$

For closed Ricci-flat manifolds with special holonomy,

$$
\frac{\lambda_{k+1}}{\lambda_{k}} \leq 4,
$$

where λ_{k} is the $k^{\text {th }}$ nonzero eigenvalue of the scalar Laplacian.

Bounds the gaps between KK excitations of the graviton. (No EFT with a finite number of massive gravitons from KK)

Also applies to smooth Calabi-Yau compactifications of string theory and G_{2} compactifications of M-theory.

E^{4} sum rule

Constraint on eigenvalue gaps for closed Ricci flat with $\lambda_{\mathcal{I}} \geq 0$.

$$
\frac{\lambda_{k+1}}{\lambda_{k}} \leq 4
$$

Includes all known cases of closed Ricci flat manifolds

This bound is optimal: it is saturated in every dimension by the first distinct nonzero eigenvalues on certain tori.

Example: Quintic Calabi-Yau (volume $=1$) V.Braun,T. Brelidze, M. R. Dougas, and B.A. Ovrut (2008)

$$
\lambda_{k} \in\{41.1 \pm 0.4,78.1 \pm 0.5,82.1 \pm 0.3,94.5 \pm 1,102 \pm 1\}
$$

Einstein condition essential: general closed Riemannian manifolds have no such bound:
de Verdiere's theorem: given a closed manifold of dimension $N \geq 3$ and any finite sequence of nondecreasing positive numbers,

$$
0<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{k}
$$

then there exists a metric such that this is the sequence of the first k nonzero eigenvalues.

Geometry/CFT analogy

Einstein Manifolds	CFTs
eigenfunctions $\quad \psi_{a}$	primary operators
eigenvalues $\quad \lambda_{a}$	scaling dimensions
overlap integrals $\quad g_{a_{1} a_{2} \cdots a_{k}} \equiv \int_{\mathcal{N}} \psi_{a_{1}} \psi_{a_{2}} \cdots \psi_{a_{k}}$	correlators
covariant derivatives ∇_{n}	descendent operators
completeness $\quad \stackrel{\psi_{a_{1}} \psi_{a_{2}}}{ }=\sum g_{a_{1} a_{2}}{ }^{a} \psi_{a}+V^{-1} \delta_{a_{1} a_{2}}$.	OPE
sum rules $\int_{\mathcal{N}} \psi_{a_{1}} \psi_{a_{2}} \psi_{a_{3}} \psi_{a_{4}}=\int_{\mathcal{N}} \psi_{a_{1},} \sqrt{\psi_{a_{2}} \psi_{a_{3}}} \psi_{a_{4}}$	crossing relations
Lichnerowicz bound $\quad \lambda_{a} \geq \frac{R}{N-1}$,	unitarity bound
Geometry data $\quad \lambda_{a}, \quad g_{a_{1} a_{2} a_{3}}$	CFT data

Geometric bootstrap

Like CFT bootstrap, exploit crossing relations to constrain the data
Crossing relations for a general Einstein manifold (not necessarily Ricci flat):

$$
\begin{gathered}
\int_{\mathcal{M}} \partial_{m} \psi_{a_{1}} \partial^{m} \psi_{a_{1}} \psi_{a_{1}} \psi_{a_{1}}=\int_{\mathcal{M}} \partial_{m} \psi_{a_{1}} \partial^{m} \psi_{a_{1}} \psi_{a_{1}} \psi_{a_{1}} \\
\int_{\mathcal{M}} \partial_{m} \psi_{a_{1}} \partial_{n} \psi_{a_{1}} \partial^{m} \psi_{a_{1}} \partial^{n} \psi_{a_{1}}=\int_{\mathcal{M}} \partial_{m} \psi_{a_{1}} \partial_{n} \psi_{a_{1}} \partial^{m} \psi_{a_{1}} \partial^{n} \psi_{a_{1}} \\
\left.\int_{\mathcal{M}} \partial_{m} \psi_{\alpha_{1}} \partial_{n} \psi_{a_{1}} \Delta_{L}\left(\partial^{m} \psi_{a_{1}} \partial^{n} \psi_{a_{1}}\right)=\int_{\mathcal{M}} \partial_{m} \psi_{a_{1} \partial_{n} \psi_{a_{1}} \Delta_{L}\left(\partial^{m}\right.}^{\psi_{a_{1}}} \partial^{n} \psi_{a_{1}}\right) \\
V^{-1} \vec{F}_{1}+\frac{1}{\lambda_{a_{1}}^{2}} \sum_{\mathcal{I}} \vec{F}_{2} g_{a_{1} a_{1} I}^{2}+\sum_{a \notin I_{\text {conf. }}}\left[\vec{F}_{3}+\frac{R \vec{F}_{4}}{(N-1) \lambda_{a}-R}\right] g_{a_{1} a_{1} a}^{2}=0 \\
\vec{F}_{1}
\end{gathered}
$$

Geometric bootstrap

postulate some candidate geometric data, (a collection of eigenvalues and triple overlap integrals)
search for a constant vector $\vec{\alpha} \in \mathbb{R}^{3}$ such that the condition

$$
V^{-1} \vec{\alpha} \cdot \vec{F}_{1}+\frac{1}{\lambda_{a_{1}}^{2}} \sum_{\mathcal{I}} \vec{\alpha} \cdot \vec{F}_{2} g_{a_{1} a_{1} I}^{2}+\sum_{a \notin I_{\text {conf }}}\left[\vec{\alpha} \cdot \vec{F}_{3}+\frac{R \vec{\alpha} \cdot \vec{F}_{4}}{(N-1) \lambda_{a}-R}\right] g_{a_{1} a_{1} a}^{2}=0
$$

can never be satisfied by this data.

If such an $\vec{\alpha}$ exists, candidate geometric data is ruled out
problem of finding such an $\vec{\alpha}$ can be formulated as a semidefinite program (SDP)
can be solved using SDPB, and Mathematica in simpler cases

Bounds on eigenvalues

Upper bound on the ratio of the 2 lowest lying scalar eigenvalues, as a function of the smallest Lichnerowicz eigenvalue

Assumptions: $R \geq 0$

Bounds on eigenvalues

Upper bound on the ratio of the 2 lowest lying scalar eigenvalues, as a function of the smallest Lichnerowicz eigenvalue

Assumptions: $R \geq 0, \mathbb{Z}_{2}$ symmetry under which $\psi_{a_{1}}$ is odd

Bounds on eigenvalues

allowed values of the 2 lowest lying scalar eigenvalues, relative to the curvature

Assumptions: $N=4, \quad R>0, \lambda_{a_{3}} \geq \frac{3 R}{2}, \lambda_{I} \geq \frac{4 R}{3}$

Lichnerowicz bound

Bounds on eigenvalues

Upper bound on the ratio of the 3rd to 1st scalar eigenvalue vs. the 2 nd to 1st scalar eigenvalue

Assumptions: $R \geq 0, \lambda_{\mathcal{I}} \geq 0$

Bounds on cubic couplings

Upper bound on lightest massive spin-2 self-coupling

Assumptions: $R \geq 0, \lambda_{\mathcal{I}} \geq 0$

Bounds on cubic couplings

Upper bound on lightest massive spin- 2 self-coupling as a function of the ratio of the lightest 2 eigenvalues

Assumptions: $R \geq 0, \lambda_{\mathcal{I}} \geq 0$

Bounds on cubic couplings

Upper bounds on massive spin-2 coupling of lightest to next lightest mode

Assumptions: $R \geq 0, \lambda_{\mathcal{I}} \geq 0$

Bounds on cubic couplings

Upper bounds on massive spin-2 coupling of lightest to next lightest mode

Assumptions: $R \geq 0, \lambda_{\mathcal{I}} \geq 0, \mathbb{Z}_{2}$ symmetry

Bounds on closed hyperbolic manifolds

James Bonifacio: arxiv:2I07.09674
Allowed lowest eigenvalues on Genus g surfaces:

Conclusions and open questions

- New non-trivial constraints on the possible eigenvalue spectra and triple overlap integrals of Einstein manifolds
- They come from crossing relations on quadruple overlap integrals. The same relations ensure the correct high-energy behavior of KK reductions of gravity
- Do any non-trivial manifolds live at the kinks of our bootstrap bounds?
- Can any non-trivial manifolds be isolated by bootstrap bounds?
- Is a manifold uniquely determined by its geometric data? (can't hear the shape of a drum, but perhaps with triple overlaps?)
- Are there data that satisfy all the crossing relations which do not come from any manifold? (a non-geometric Kaluza-Klein compactification)

